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Quantum chaotic scattering with a mixed phase space: The three-disk billiard in a magnetic field
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We study the classical and semiclassical scattering behavior of electrons in an open three-disk billard in the
presence of a homogeneous magnetic field, which is confined to the inner part of the scattering region. As the
magnetic field is increased the phase space of the invariant set of the classical scattering trajectories changes
from hyperbolic~fully chaotic! to a mixed situation, where KAM tori are present. The ‘‘stickiness’’ of the
stable trajectories leads to a much slower decay of the survival probability of trajectories as compared to the
hyperbolic case. We show that this effect influences strongly the quantum fluctuations of the scattering am-
plitude and cross sections.

PACS number~s!: 05.45.2a, 03.65.Sq, 72.20.2i
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I. INTRODUCTION

It is fascinating to study the quantum-mechanical scat
ing properties of mesoscopic systems because this field c
bines the rather applied topic of device miniaturization@1,2#
with the search for quantum traces of classically nonin
grable dynamics@3#. It has, for example, been shown that t
quantum fluctuations exhibited by electronic transmiss
coefficients through mesoscopic cavities are related to
statistics of classical ballistic trajectories by means of
semiclassical approximation@4–6#. One point of interest was
to study the quantum correlation functions that correspon
structures whose classical dynamics is fully chaotic or fu
integrable@7#. Especially the case of chaotic scattering
which the phase space properties of the trapped periodic
bits ~invariant set! play the key role has been addressed@4,8#.
It has, in particular, been realized that in the case of a mi
phase space, which is the most important one, the fluc
tions differ drastically from those in the two other case
namely, the fully chaotic and the fully regular situation. Th
is so, because the stable members of the invariant set hi
the transient orbits to leave the scattering region~‘‘sticki-
ness’’ of the stable pinned orbits!. Thereby interference pat
terns are produced that lead to mesoscopic fluctuations
a statistics that is characteristic for the mixed phase sp
case@9–15#.

An interesting chaotic scattering model, in which the
variant set posseses a mixed phase space, is the three
billiard in the presence of an applied magnetic field@16#. In
the absence of an applied field the scattering from the th
disk billiard is fully chaotic~hyperbolic! @17#. In the pres-
ence of a magnetic field the system becomes less cha
and, beyond a certain critical field stable islands appea
the phase space.

In this article we present a case study of the classical
quantum-mechanical scattering properties of the three-
billiard with magnetic field. This system is also interesti
from an applied point of view, because it can be viewed
the inner part of a rounded three-lead junction. In Sec. II
compare the statistical properties of the scattered trajecto
PRE 611063-651X/2000/61~1!/382~8!/$15.00
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in the nonhyperbolic situation with the field-free hyperbo
case. In Sec. III we investigate the quantum fluctuations
the scattering amplitudes and cross sections in the two c
by means of the semiclassical approximation. We dem
strate in detail, how the fluctuations are influenced by
phase space of the classical invariant set. We further ch
the validity of various approximations used in the literatu
for relating the classical statistics to the quantum fluct
tions.

II. THE THREE-DISK BILLIARD: CLASSICAL
SCATTERING PROPERTIES

We consider an incident beam of classical particles in t
dimensions with chargeQ52e and initial momentump
5\kex , which are scattered from three hard disks~see Fig.
1!. An applied magnetic field characterized by the cyclotr
radiusR5\k/eB is assumed to act inside the region limite
by the large circle in Figs. 1 and 2. We restrict ourselves
an arrangement in which the centers of the disks~radiusr d
51) form an equilateral triangle of side lengtha52.5.

The statistical properties of the invariant set~i.e., the set
of closed trajectories which never leave the scattering reg!
corresponding to this arrangement have been investig
and characterized by Breymannet al. @16#. For zero and

FIG. 1. Scattering geometry for the three-disk billiard. The dis
~radius 1! are arranged such that their centers form an equilat
triangle with side length 2.5. The magnetic field with strengthB
5mv/eR (R is the cyclotron radius! acts only inside the circum-
feral circle of the triangle~radiusRB).
382 ©2000 The American Physical Society
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PRE 61 383QUANTUM CHAOTIC SCATTERING WITH A MIXED . . .
small field the system is fully chaotic~hyperbolic!. Beyond a
certain critical field~for our geometryR<'0.63, see Ap-
pendix A! stable islands appear in the phase space of
invariant set. This drastically influences the scattering pr
erties as evidenced, e.g., by a vanishing escape rate a
vanishing average Lyapunov exponent.

In the following we investigate some features of the no
hyperbolic case in more detail: An important statistical qu
tity, which will turn out to be relevant for the quantum fluc
tuations in the semiclassical regime, is the numberN(n) of
trajectories which are scattered not less thann times. It can
also be called the number of trajectories which have not
the scattering region aftern bounces or, in short, the surviva
probability of trajectories. For hyperbolic chaotic scatteri
systems this quantity is known~e.g., Ref. @18#! to decay
exponentially withn, the exponent being the escape ratel.
In the field free case (R5`) we obtain for the three-disk
billiard for our parametersl50.48. We turn now our atten
tion to the case with field corresponding toR50.5 in which
stable closed trajectories are present. For the symbolic c
of the periodic orbits we use (2) for clockwise scattering,
(1) for anticlockwise scattering, and~0! for scattering twice
at the same disk. The shortest stable periodic orbits~KAM
tori! we found in this case are those with the symbolic co
(2) and (22222220), see Fig. 2.

In Fig. 3 we have depictedN(n) of the field-free situation

FIG. 2. The shortest stable periodic orbits for cyclotron rad
R50.5.

FIG. 3. Survival probabilityN(n) vs number of reflectionsn.
Dashed line:R5` ~hyperbolic case!. Full line: R50.5 ~nonhyper-
bolic case!. For n.10 the survival probability decreases expone
tially as N(n)}exp$20.48n%. Insert: Double-logarithmic plot for
n.100. The dotted straight line corresponds toN(n)}n21.37, the
dash-dotted line toN(n)}exp$20.038n%.
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~dashes! together with the function corresponding toR
50.5. The latter has, in contrast to the hyperbolic case,
interesting structure. It first decays as the hyperbolic cu
until nearn510 the presence of the KAM tori becomes di
tinct. It is well known that the transient trajectories stick
long time near the stable orbits of the invariant set~‘‘sticki-
ness’’ of the KAM tori, see e.g., Ref.@10#!. This leads to a
much slower decay ofN(n). It is also known@19–23#, that
in systems with mixed phase space the survival probab
asymptotically decays algebraically according toN(n)
}n2b. This is also true in our case~inset of Fig. 3!. In the
regimen.300 an algebraic decay is seen withb51.37. In
the intermediate range the survival probability decays ex
nentially with l50.038.

In order to understand this behavior we take a look at
phase space structure of some very long transient traje
ries. In Fig. 4 we have plotted the midpoint coordinatesX
andY of their cyclotron arcs. These are known to constitu
a pair of generalized coordinates which are canonically c
jugated with respect to each other. Therefore their loci c
stitute a Poincare´ section.~The Poincare´ section is a two-
dimensional surface, and the set of all circle midpoin
uniquely form this surface.! From Fig. 4~a! it is seen that the
long trajectories spend most of their time at the boundary
a stable island, the center of which corresponds to the st
orbit (2). However, at this degree of magnification the se
similar structure of the KAM surface cannot be resolve
This is only the case at a larger magnification~b! and ~d!.
There a typical Poincare´-Birkhoff scenario is visible, which
is corroborated by~c!, where a Poincare´ section of the in-
variant set is shown. As the algebraic decay ofN(n) is a
consequence of the fractal remnants of the destroyed

s

-

FIG. 4. ~a! Midpoints of arcs~phase space portraits! correspond-
ing to two very long trajectories with about 3000 reflections.~b!, ~d!
Magnification of the region around the cusp of the stable island
the two trajectories separately.~c! The invariant set in the phas
space region shown in~b! and ~d! exhibits a self-similar Poincare´-
Birkhoff scenario.
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384 PRE 61EICHENGRÜN, SCHIRMACHER, AND BREYMANN
~‘‘cantori’’ ! at the KAM surface@22#, we conclude that the
late onset of the algebraic decay follows from the very sm
phase space volume enclosed by the cantori. For comp
ness we show in Fig. 5 the Poincare´ sections of some long
trajectories which follow the stable orbit (222222
20) ~see Fig. 2! for a long time. A Poincare´-Birkhoff sce-
nario is visible as well, but as in the (2) case the phase
space volume is tiny.

At the end of this section we would like to comment o
the fractal structure of the set of singularities in the scatter
function ũ(b), whereb is the impact parameter~distance of
the incoming ray to thex axis! and ũ is the angle of the
outgoing ray with thex axis. It has been postulated@24# that
in the case of a mixed phase space the fractal dimensionD0
of this set becomes unity. We have determined thee uncer-
tainty f (e) @18,24# for the caseR50.5, from whichD0 can
be determined asD0512 lime→0 ln f(e)/ln e. On a log-log
plot of f (e) @14# we do not find any deviation from a straigh
line in a range of impact parameter intervalse from 1026

down to 10215, a resolution at which the survival probabilit
already decays algebraically. The slope yieldsD050.89. We
doubt that in our case for smaller intervals a change of
slope from 0.89 to 1 occurs, but, of course, we cannot
clude that this might happen.

III. SEMICLASSICAL TREATMENT OF QUANTUM
SCATTERING

For treating the magnetic field inside the central circle
radius r B quantum mechanically we choose the followin
gauge for the vector potentialA(r ,u):

A55
F

2pr
eu r>r B ,

Fr

2pr B
2

eu r ,r B .

~1!

FIG. 5. Phase space portraits of a single long trajectory wh
follows the stable orbit (22222220) for a long time. The
magnification in the insert indicates a Poincare´-Birkhoff scenario.
ll
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Here F5Bpr b
2 is the magnetic flux through the centr

circle andeu5$(2sin(u),cos(u)% is the unit vector in theu
direction. This introduces an additional phase factor in
asymptotic wave functions of the scattering system@25#:

C~u,r ! 5
r→`

C in1Cout

5exp@2 ia~u2p!#exp@ ik cos~u!r # ~2a!

1
f ~u!

Ar
exp~ ikr !. ~2b!

a5eF/hc is the number of flux quanta in the central circl
In semiclassical approximation the scattering amplitu

takes the form@26#

f ~u!5 (
ũ(bj )5u

Acj expF i S S̃j

\
2

p

2
m j D G ~3a!

with

S̃j5E
A

B

pdq2\a~uA2p!2a\~u2uB!22mwv0[\kL̃j

~3b!

and

cj5U ]ũ

]bj
U21

. ~3c!

The sum in Eq.~3a! has to be performed over all classic
trajectories labeled by an impact parameterbj that are scat-
tered into the same angleu, i.e., with scattering function@18#

ũ(bj )5u, S̃j is the action integral along a trajectory betwe
the pointsA andB on the ‘‘start’’ and ‘‘goal’’ lines ~see Fig.
1!. p5mv2(e/c)A is the classical canonical momentum.L̃
is an effective length which does not depend on the w
numberk. In the absence of the field it is equal to the leng
of the trajectory.m j is the Maslov index@26#, which in-
creases by 1 if a caustics is passed, and by 2 in the case
reflection at one of the disks. The differential cross section
as in the three-dimensional case, given by

ds

du
5u f ~u!u2. ~4!

The diagonal term of the resulting double sum gives
classical cross section

ds

du
~u!U

class

5 (
ũ(bj )5u

U ]ũ

]bj
U21

. ~5!

Relative extrema in the scattering functionũ(b) lead to
‘‘rainbow’’ singularities in the prefactor of the wave func
tion. We have removed these singularities by a cutoff pro
dure ~see Appendix B!.

Quantum fluctuations in the scattering amplitude a
cross sections appear due to the presence of the phase fa
in Eq. ~3a!. They can be explored by varying an extern

h
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PRE 61 385QUANTUM CHAOTIC SCATTERING WITH A MIXED . . .
parameter, such as the energy of the electrons@Fermi energy
E5(1/2)mv25(\k)2/2m# or the magnetic field. We choos
to study these fluctuations as a function of the wave num
k. It has been pointed out by Blu¨mel and Smilanski@4# that
the correlation functions that describe the quantum fluct
tions are related to the statistics of the classical trajectorie
chaotic scattering systems. We are now going to study
relationship in detail for the case of a mixed phase spac
cyclotron radiusR50.5 and compare it to the hyperbol
case (R5`). Studying the quantum behavior at differe
wave numbers with fixedR implies B/k5const.k/B can
therefore be called the scaled wave number andE/B2 the
scaled energy in the spirit of the scaled field spectroscop
atomic physics@27#. In order to do so we define the fluctua
tions of the scattering amplitude and the cross section w
the help of an average over a finitek range 2h:

^ f ~k!&h5
1

2hEk2h

k1h
f ~k8!dk8. ~6!

The correlation functions of the scattering amplitud
f̃ Ru(k)5 f Ru(k)2^ f Ru(k)&h and the cross sections

ds̃

du
~k!5

ds

du
~k!2 K ds

du
~k!L

h

are then defined as follows:

Cu,R,k0
~k!5^ f̃ Ru~k0!* f̃ Ru~k01k!&Dk , ~7a!

Ku,R,k0
~k!5K ds̃

du
~k0!

ds̃

du
~k01k!L

Dk

. ~7b!

Let us first discuss the correlation function of the scatter
amplitudeCu,R,k0

(k). If Eq. ~3a! is inserted into Eq.~7a! a
double sum is obtained, the diagonal term of which takes
form

Cu,R,k0
~k!'Cu,R

d ~k!5(
u

j2~hL̃u!cu exp$ ikL̃u%. ~8!

Here j(x)512sin(x)/x, coming from the average~6!. It is
plausible that there should exist a linear relationship betw
the effective lengthL̃ of a trajectory and its numbern of
reflections. We found empirically by plottingL̃ for a large
number of trajectories vsn that we haveL̃'l n with l
50.8. If we define

Pu~n!ª(
j

cj un( j )5n

to be the number of trajectories which are scattered into
angleu and have exactlyn reflections, and if we replace th
function j by a step function, we haveCu,R

d (k)
'(n5n0

` Pu(n)exp$ikl n%, wheren0.0 depends onl and

h. It is clear that in the case of chaotic scattering~also in the
presence of stable orbits! Pu(n) only weakly depends onu.
Its angle average, on the other hand, is justP(n)/2p,
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whereP(n)5N(n)2N(n11) is the total number of trajec
tories perb interval which undergon reflections. We can
therefore write

Cu,R
d ~k!'

1

2p (
n5n0

`

P~n!exp$ ikl n%. ~9!

It is seen that in this approximationCu,R(k) is the Fourier
transform ofP(n) which is the negative derivative ofN(n).
This result is similar to that of Blu¨mel and Smilanski@4#,
who related the energy correlation function of theS-matrix
elements to the time dependent survival probabilityN(t). In
the hyperbolic case bothN(n) as well asP(n) decay expo-
nentially, so thatuCu,R(k)u2 becomes a Lorentzian with
width l. As mentioned above, in the case of a mixed ph
spaceN(n) decays asymptotically asN(n)}n2b. Conse-
quently P(n)}n2(b11), and the correlation function shoul
then vary asCu,R(k)}kb @9–12,15#. However in our special
case the algebraic behavior sets in only very ‘‘late,’’ i.
after more than 300 bounces.

In Fig. 6 we compare the correlation functionsCu,R(k)
for a arbitrarily chosen angleu53.4, which occur in the
hyperbolic (R5`) and in the nonhyperbolic (R50.5) cases.
We have added the Fourier transforms of the functionsP(n)
andPu(n) in order to determine the accuracy of the appro
mation steps that lead to Eq.~9!. The most striking feature is
of course, the different widths of the functions in the diffe
ent cases. These widths are given by the different esc
ratesl50.48 andl50.038, respectively. This is plausibl
from Eq. ~9!, which states, that the correlation function
essentially the Fourier transform ofP(n). It is interesting to
note that the diagonal approximation leading toCu,R(k)
'(n5n0

` Pu(n)exp(ikln) is much more accurate in the non

FIG. 6. Modulus square of the correlation function of the sc
tering amplitudeuCu,R(k)u2. Full circles: hyperbolic case (R5`).
Triangles: nonhyperbolic case (R50.5). In both cases we choseu
53.4, k051000, Dk510.0, h51.0. f k,R(u) has been evaluated
using 2.03107 trajectories from theb interval @20.54,0.54#. For
comparison we showu(n5n0

` Pu(n)exp(ikln)u2 for R5` ~dash-
dotted line! and R50.5 ~dashed line! as well as
u(n5n0

` P(n)exp(ikln)u2 for R5` ~full line! andR50.5 ~small dots!
with l 50.8 andn054. All curves are normalized to unity atk
50. The inset shows the small wave number regime, where
striking difference between the hyperbolic and the nonhyperb
case is most clearly seen.
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hyperbolic case than otherwise. On the other handPu(n) is
very badly approximated byP(n) in this case. Detailed cal
culations @14# show that the accuracy of the diagonal a
proximation increases with increasingk0 and with increasing
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We turn now to a discussion of the correlation function

the scattering cross sectionKu,R,k0
(k). Inserting Eq.~3a!

into Eq. ~4!, and the result into Eq.~7b! we obtain
Ku,R,k0
~k!5K (

u,v,w,z
uÞv,wÞz

AcwAczAcuAcvj~h@ L̃u2L̃v# !j~h@ L̃w2L̃z# ! ~10a!

3exp[ik(L̃w2L̃z1L̃z1L̃u2L̃v)]expF i
p

2
~mw2mz1mu2mv!Gexp[ik(L̃u2L̃v)] Dk

~10b!
of

he
s a
tor
uc-
whereKu,R
d (k) is the diagonal part. If we compare it with th

diagonal part~8! of the scattering amplitude correlation fun
tion we see that we have approximatelyKu,R

d (k)
'uCu,R

d (k)u2. The difference consists in a different comb
nation of thej functions. In Eq.~10b! the effect of these
functions is to eliminate those pairs of trajectories wh
have an effective length difference larger than 1/h, whereas
in Eq. ~8! the j functions eliminate short trajectories. Ne
glecting these different restrictions we can state in diago
approximation

Ku,R~k!'uCu,R~k!u2. ~11!

In Fig. 7 we compare the correlation functions of the sc
tering cross sections in the hyperbolic (R5`) and nonhy-
perbolic case (R50.5) with uCu,R(k)u2. We have also taken
two different anglesu to show the weak but distinct angl
dependence of the fluctuations. Since the cross section
our model geometry can approximately be related to
transmission coefficients in a three-lead junction we exp
that the results shown in Fig. 7 should be similar to t
mesoscopic fluctuations of the conductance of a three-
junction with and without a magnetic field. As soon as sta
classical orbits appear the range and the degree of correl
of the fluctuations change drastically. Again the small-k re-
gime is characterized by the different escape rates of Fig
Furthermore we observe in the nonhyperbolic case at hig
wave numbers characteristic oscillations which are absen
the hyperbolic case.

In the following we are going to demonstrate that the
oscillations are due to a Bohr-Sommerfeld type quantiza
of the stable periodic orbits. From Eq.~10b! it follows that
Ku,R(k) is essentially the Fourier transform of the weigh
cucv with respect to the effective length differencesL̃u

2L̃v . This product can be interpreted as the probability fo
al
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pair of trajectories (u,v) having the effective lengthsL̃u and
L̃v . In Figs. 8 and 9 we compare the Fourier transform
Ku,R(k) ~form factor! with a plot of the productscucv
against the modulus of effective length difference. In t
hyperbolic case the form factor decays rapidly and ha
random structure. In the nonhyperbolic case the form fac
decays very slowly and has a periodic structure. This str
ture is also visible in the values of the weightscucv . The

FIG. 7. Correlation function of scattering cross sections.~a! and
~b! hyperbolic case (R5`), ~c! and ~d! nonhyperbolic case (R
50.5). The averages in~a! and~c! have been done withh51 and
Dk530, whereas in~b! and~d! with h530 andDk530. Full thick
lines correspond to scattering cross sections into angleu53.4,
dashed linesu55.4, thin lines areuCu,R(k)u2.
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PRE 61 387QUANTUM CHAOTIC SCATTERING WITH A MIXED . . .
FIG. 8. Fourier transform of the cross-section correlation fu
tion ~form factor! vs orbit length differenceLi2L j together with the
values ofcicj used for calculatingKu,R(k) for the hyperbolic case
(R5`).

FIG. 9. Fourier transform of the cross-section correlation fu

tion ~form factor! vs effective length differenceL̃ i2L̃ j together
with the values ofcicj used for calculatingKu,R(k) for the nonhy-
perbolic case (R50.5). The bottom picture shows full rectangul
lines at length differences being multiples ofL252.6 @effective
length of the stable orbit~/! of Fig. 2#. The positions of the broken
lines are those of the full lines plus and minusL12 @effective length
of the unstable periodic orbit (12) ~see the Appendix!#.
period is just the effective lengthL̃252.6 ~see Appendix A!.
There is an additional structure within the period of t
stable orbits which just corresponds to a length of the
stable orbit (12), L1250.96. It seems that the transie
orbits, when they enter or leave the vicinity of the stab
orbits of the (2) type have sections of the (12) type. Thus,
we find that the periodic structure in the correlation functi
of the scattering cross section is due to resonances w
appear if the Bohr-Sommerfeld condition

\kL̃25 R pdq52p\~n1c! ~12!

for quantization of the stable orbit (2) is fulfilled.

IV. DISCUSSION AND CONCLUSION

We have studied the classical and quantum chaotic s
tering properties of the three-disk billiard in the absence a
presence of an applied magnetic field. In the absence of
field the system is hyperbolic and exhibits an exponentia
decaying survival probabilibyN(n) of trajectories in the
scattering region. Beyond a certain critical field some of
invariant orbits become stable, which leads to a much slo
decrease ofN(n). The asymptotic algebraic decay with e
ponent b51.37 is reached only forn.300. The drastic
change in the statistics of the transient trajectories is refle
in the statistics of the quantum fluctuations. As the corre
tion function C(k) of the wave number fluctuations of th
scattering amplitude is approximately proportional to t
Fourier transform of the derivative ofN(n), the slow decay
of N(n) is reflected in a much sharper peak inuC(k)u2 near
k50. The latter quantity is, in diagonal approximation, a
proximately proportional to the correlation functionK(k) of
the wave number fluctuations of the cross section. This ef
should be visible in three- or four-lead junctions under t
influence of an applied magnetic field.

In our case the phase space enclosed by the the fra
‘‘cantori’’ is very small and is only explored by very long
transient classical trajectories. Their role in the quant
fluctuations is negligible. Therefore for our model the qua
tum fluctuations are not self-similar as is the case for ot
scattering geometries with mixed phase space@11,15,28–30#.
Whether or not this situation is exceptional or generic
systems with mixed phase space must be explored by fur
model calculations and experimental measurements.

In our semiclassical calculation the phase space struc
of the trapped orbits enter via the transient orbits. Recent
theoretical investigation was published in which the quant
time delay is directly related to a semiclassical sum over
closed orbits of the scattering region@8#. One can therefore
expect that the fluctuations in the quantum time delay w
reflect the phase space structure of the invariant set
similar way as it is the case for the fluctuations of the tra
mission coefficients. We conclude by suggesting to meas
the conductance fluctuations of rounded junctions at differ
scaled fields to detect the traces of the transition from
hyperbolic to the nonhyperbolic situations.

-

-
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388 PRE 61EICHENGRÜN, SCHIRMACHER, AND BREYMANN
ACKNOWLEDGMENTS

We are indebted to H. Thomas and H. Friedrich for co
tinuous support and stimulating discussions. W. S. is grat
to J. Hajdu for hospitality at Cologne University. This wo
has been supported by Deutsche Forschungsgemeins
under Schi 308/4-1.

APPENDIX A: THE SMALLEST CLOSED ORBITS
OF THE THREE-DISK BILLARD

The Poincare´ map Ki which generates the sequence
midpoint coordinates (mx ,my) of arcs due to reflections
from disk # i with midpoint (xi ,yi) is given by

mx85sx1~mx2xi !cos~2g!2~my2yi !sin~2g!,

my85sy1~mx2xi !sin~2g!1~my2yi !cos~2g!. ~A1!

It is just a rotation about (xi ,yi) by the angleg defined by

cos~g!5
r d

21d22R2

2r dd

with

d5A~mx2sx!
21~my2sy!2.

The stability of an orbit of periodp is determined by the
eigenvaluesl6 of the stability matrixS5(DKi)

p which is
the pth power of the Jacobian ofKi . In terms of the traceT
of S they are given by@16#

l65
1

2
~T6AT224!. ~A2!

Sincel1l251 they are either unit roots~stable case,uTu
,2) or real and reciprocal to each other. The Lyapun
exponenth is then given by the greater of the two ash
5 lnul1u. In Fig. 10 we show the Lyapunov exponents of t
three periodic orbits depicted in Fig. 11.

FIG. 10. Left: The unstable periodic orbit with code (12) and
the simplest of the stable periodic orbits with code (2) together
with the midpointsmi of the arcs.m2 is in the center of the stable
island in Fig. 4. Right: The simplest of the unstable periodic orb
with code (1).
-
ul

aft

f

v

For the effective lengths of these orbits we have to cal
late the action along the orbit

\kL̃5S5 R b f pdib f q5\kl2
e0

c
BF5\kS l 2

F

RD ,

~A3!

wherel is the length of the periodic orbit andF the oriented
net area.

For the orbits (1) and (2) we obtain

L̃653Rw1
1

R
~3zAR22z27z2A3! ~A4a!

with

z5
a2A3

2
and w5arcsinS z

RD . ~A4b!

For the orbit (12) we have

L̃1252R arcsinS z̃

R
D 12z̃A12

z̃2

R2
~A5a!

with

z̃5
a

2
21. ~A5b!

APPENDIX B: RAINBOW SINGULARITIES

A rainbow singularity appears if the scattering functio
ũ(b) has an extremum at a certain valueus . If we add the
semiclassical scattering amplitudes on both sides of the
tremum we get@14#

f s~u!5exp~ id!
A2

AuAu
S u2us

A D 21/4

3cosS k
2

3
uABuS u2us

A D 3/2

2
p

4 D , ~B1!

with A5 1
2 (]2u/]2b), B5(]t/]b) and d5kL̃s2p/4(m1

1m2). Here t is the impact parameter along the ‘‘go

s

FIG. 11. Lyapunov exponentsh for the unstable orbits depicte
in Fig. 11 as a function of the cyclotron radiusR.
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line’’ at point B ~see Fig. 1!. This expression, which diverge
at us is regularized in the usual way@21# by means of the
Airy function Ai(x):

f s~u!5exp~ id!
A2p

AuAu
ukABu1/6

3Ai F2ukABu2/3
u2us

A G . ~B2!
.

ev

s

-
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The bookkeeping of these expressions takes a lot of com
ing time. So we replaced in our numerical calculationsũ(b)
by 10240 in the region aroundus , whereũ(b),10240. We
compared calculations using this cutoff procedure with c
culations using Eq.~B2!, where we took an approximate ve
sion of the Airy function@14#. We found only minor differ-
ences, and the statistical properties of the results were
altered. We therefore used the cutoff procedure through
our calculations.
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