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Quantum chaotic scattering with a mixed phase space: The three-disk billiard in a magnetic field
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We study the classical and semiclassical scattering behavior of electrons in an open three-disk billard in the
presence of a homogeneous magnetic field, which is confined to the inner part of the scattering region. As the
magnetic field is increased the phase space of the invariant set of the classical scattering trajectories changes
from hyperbolic(fully chaotic) to a mixed situation, where KAM tori are present. The “stickiness” of the
stable trajectories leads to a much slower decay of the survival probability of trajectories as compared to the
hyperbolic case. We show that this effect influences strongly the quantum fluctuations of the scattering am-
plitude and cross sections.

PACS numbds): 05.45~a, 03.65.Sq, 72.26.i

[. INTRODUCTION in the nonhyperbolic situation with the field-free hyperbolic
case. In Sec. Il we investigate the quantum fluctuations of

It is fascinating to study the quantum-mechanical scatterthe scattering amplitudes and cross sections in the two cases
ing properties of mesoscopic systems because this field cofdy means of the semiclassical approximation. We demon-
bines the rather app“ed topic of device miniaturizatli(hrg] strate in detail, how the fluctgatio_ns are influenced by the
with the search for quantum traces of classically nonintePhase space of the classical invariant set. We further check
grable dynamic§3]. It has, for example, been shown that the the vahdny of various approximations used in the literature
quantum fluctuations exhibited by electronic transmissiodOr relating the classical statistics to the quantum fluctua-
coefficients through mesoscopic cavities are related to thBONS.
statistics of classical ballistic trajectories by means of the
semiclassical approximatigd—6]. One point of interest was II. THE THREE-DISK BILLIARD: CLASSICAL
to study the quantum correlation functions that correspond to SCATTERING PROPERTIES
structures whose classical dynamics is fully chaotic or fully ) o ) ) _
integrable[7]. Especially the case of chaotic scattering in We gonS|delr an incident beam of C.Ia.s.swal particles in two
which the phase space properties of the trapped periodic ofimensions with charg®=—e and initial momentump
bits (invariant setplay the key role has been addresped@]. ~ =7kex, which are scattered from three hard digkse Fig.
It has, in particular, been realized that in the case of a mixed)- An applied magnetic field characterized by the cyclotron
phase space, which is the most important one, the f|uctudﬂdiUSR:ﬁk/eB is assumed to act inside the region limited
tions differ drastically from those in the two other cases,by the large circle in Figs. 1 and 2. We restrict ourselves to
namely, the fully chaotic and the fully regular situation. This@n arrangement in which the centers of the digksliusr 4
is so, because the stable members of the invariant set hinderl) form an equilateral triangle of side lengif=2.5.
the transient orbits to leave the scattering regitsticki- The statistical properties of the invariant ¢eeé., the set
ness” of the stable pinned orbjtsThereby interference pat- Of closed trajectories which never leave the scattering region
terns are produced that lead to mesoscopic fluctuations witgorresponding to this arrangement have been investigated
a statistics that is characteristic for the mixed phase spac@nd characterized by Breymaret al. [16]. For zero and
case[9-15.

An interesting chaotic scattering model, in which the in-
variant set posseses a mixed phase space, is the three-disk
billiard in the presence of an applied magnetic figlé]. In —F

incident

the absence of an applied field the scattering from the three- plane
disk billiard is fully chaotic(hyperbolig [17]. In the pres- -
ence of a magnetic field the system becomes less chaotic
and, beyond a certain critical field stable islands appear in leciro
the phase space. e

In this article we present a case study of the classical and
quantum-mechanical scattering properties of the three-disk F|G. 1. Scattering geometry for the three-disk billiard. The disks
billiard with magnetic field. This system is also interesting (radius 1 are arranged such that their centers form an equilateral
from an applied point of view, because it can be viewed asriangle with side length 2.5. The magnetic field with strenBth
the inner part of a rounded three-lead junction. In Sec. Il we=mv/eR (R is the cyclotron radiusacts only inside the circum-
compare the statistical properties of the scattered trajectoridsral circle of the triangléradiusRg).
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FIG. 2. The shortest stable periodic orbits for cyclotron radius
R=0.5.

small field the system is fully chaotitiyperbolig. Beyond a ot
certain critical field(for our geometryR=~0.63, see Ap-
pendix A stable islands appear in the phase space of the
invariant set. This drastically influences the scattering prop-
erties as evidenced, e.g., by a vanishing escape rate and
vanishing average Lyapunov exponent.

In the following we investigate some features of the non-
hyperbolic case in more detail: An important statistical quan- FIG. 4. (a) Midpoints of arcsphase space portrajtsorrespond-
tity, which will turn out to be relevant for the quantum fluc- ing to two very long trajectories with about 3000 reflectiofs, (d)
tuations in the semiclassical regime, is the numkén) of Magnificatic_)n of t_he region around the_cusp of the s_table island for
trajectories which are scattered not less thaimes. It can  the two trajectories separatelfc) The invariant set in the phase
also be called the number of trajectories which have not lefPace region shown ifb) and (d) exhibits a self-similar Poincare
the scattering region afterbounces or, in short, the survival Birkhoff scenario.
probability of trajectories. For hyperbolic chaotic scattering
systems this quantity is knowfe.g., Ref.[18]) to decay
exponentially withn, the exponent being the escape rate
In the field free caseR==) we obtain for the three-disk

- 0.135

(d)

(dashey together with the function corresponding ®
=0.5. The latter has, in contrast to the hyperbolic case, an

interesting structure. It first decays as the hyperbolic curve
billiard for our parameters =0.48. We turn now our atten- until nearn=10 the presence of the KAM tori becomes dis-

tion to the case with field corresponding®s=0.5 in which  tinct. It is well known that the transient trajectories stick a
stable closed trajectories are present. For the symbolic codeng time near the stable orbits of the invariant &sticki-
of the periodic orbits we use~) for clockwise scattering, ness” of the KAM tori, see e.g., Ref10]). This leads to a
(+) for anticlockwise scattering, ar(@) for scattering twice much slower decay dfi(n). It is also known[19-23, that
at the same disk. The shortest stable periodic oilisM in systems with mixed phase space the survival probability
tori) we found in this case are those with the symbolic codeasymptotically decays algebraically according (n)
(-)and (—————~— 0), see Fig. 2. «n~#. This is also true in our cag@nset of Fig. 3. In the
In Fig. 3 we have depicted(n) of the field-free situation regimen>300 an algebraic decay is seen wjth-1.37. In
the intermediate range the survival probability decays expo-
10° nentially with A =0.038.
- In order to understand this behavior we take a look at the
phase space structure of some very long transient trajecto-
ries. In Fig. 4 we have plotted the midpoint coordina¥es
andY of their cyclotron arcs. These are known to constitute
a pair of generalized coordinates which are canonically con-
jugated with respect to each other. Therefore their loci con-
stitute a Poincaresection.(The Poincaresection is a two-
dimensional surface, and the set of all circle midpoints
\ uniquely form this surfaceFrom Fig. 4a) it is seen that the
10° | \ long trajectories spend most of their time at the boundary of
a stable island, the center of which corresponds to the stable
orbit (—). However, at this degree of magnification the self-
FIG. 3. Survival probabilityN(n) vs number of reflections.  Similar structure of the KAM surface cannot be resolved.
Dashed lineR= (hyperbolic casg Full line: R=0.5 (nonhyper-  This is only the case at a larger magnificatidn and (d).
bolic case. Forn>10 the survival probability decreases exponen- There a typical PoincasBirkhoff scenario is visible, which
tially as N(n)=exp{—0.4&}. Insert: Double-logarithmic plot for iS corroborated by(c), where a Poincarsection of the in-
n>100. The dotted straight line corresponds\n)=n~37 the  variant set is shown. As the algebraic decayNgh) is a
dash-dotted line ttN(n)cexp{—0.03&}. consequence of the fractal remnants of the destroyed tori
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' ' ' ' ' ' Here <I>=B7-rr§ is the magnetic flux through the central
10 ¢ . 7 o84 T circle ande,={(—sin(),cos@)} is the unit vector in thed
L ] 0'82 direction. This introduces an additional phase factor in the
- ) , asymptotic wave functions of the scattering sys{@m:
08 [ - 1080 ~ T
- > / 1078 R
06 | 045 050 1 V(O.r) = Wit Wou
» =exd —ia(f—m)]exdikcogO)r] (2a
>-
f(e)
I ; + —exp(ikr). (2b)
0.2t / ‘ | Jr
/
/ 1 a=ed/hc is the number of flux quanta in the central circle.
0.0 - 1 In semiclassical approximation the scattering amplitude
takes the forni26]
04 02 00 02 04 06 f(6)= Je exd i S _m " (33)
X o(bj)=0 : Ao 27

FIG. 5. Phase space portraits of a single long trajectory WhiChWi'[h
follows the stable orbit { —————— 0) for a long time. The
magnification in the insert indicates a Poinc&iekhoff scenario. B

S= f pdg—f a(Oa— 7) — ah(6— 0g) — 2mwvo=hKL,
(“cantori” ) at the KAM surfacd 22], we conclude that the A
late onset of the algebraic decay follows from the very small (3b)
phase space volume enclosed by the cantori. For complet%hd
ness we show in Fig. 5 the Poincagections of some long
trajectories which follow the stable orbit—«(—————
—0) (see Fig. 2 for a long time. A Poincar®irkhoff sce- cj=
nario is visible as well, but as in the-() case the phase
space volume is tiny.

At the end of this section we would like to comment on
the fractal structure of the set of singularities in the scatterin§

function 6(b), whereb is the impact parametédistance of

the incoming ray to thex axis) and @ is the angle of the
outgoing ray with thex axis. It has been postulat¢@4] that

in the case of a mixed phase space the fractal dimeri3jpn
of this set becomes unity. We have determinedéhancer-
tainty f(€) [18,24] for the caseR=0.5, from whichD, can
be determined a®y=1—Ilim._¢Inf(e)/iIne. On a log-log
plot of f(€) [14] we do not find any deviation from a straight
line in a range of impact parameter intervalgrom 10 °
down to 10 %5, a resolution at which the survival probability
already decays algebraically. The slope yidlds=0.89. We do
doubt that in our case for smaller intervals a change of the —=|f(0)|% (4)
slope from 0.89 to 1 occurs, but, of course, we cannot ex- do

clude that this might happen.

go| "

a_bj (30

The sum in Eq(3a has to be performed over all classical
rajectories labeled by an impact parametethat are scat-
ered into the same angtg i.e., with scattering functiofl8]

~H(bj)z 0, ~SJ- is the action integral along a trajectory between
the pointsA andB on the “start” and “goal” lines(see Fig.

1). p=mv—(e/c)A is the classical canonical momentum.

is an effective length which does not depend on the wave
numberk. In the absence of the field it is equal to the length
of the trajectory.u; is the Maslov index26], which in-
creases by 1 if a caustics is passed, and by 2 in the case of a
reflection at one of the disks. The differential cross section is,
as in the three-dimensional case, given by

The diagonal term of the resulting double sum gives the

classical cross section
I1l. SEMICLASSICAL TREATMENT OF QUANTUM

-1

SCATTERING do T
. o . — = > |0 (5)
For treating the magnetic field inside the central circle of da(e) class (b6 ab;
radius rg quantum mechanically we choose the following !
gauge for the vector potentiél(r, ): Relative extrema in the scattering functigt{b) lead to
@ “rainbow” singularities in the prefactor of the wave func-
—e, [I=>Ig, tion. We have removed these singularities by a cutoff proce-
2 dure (see Appendix B
A= or @ Quantum fluctuations in the scattering amplitude and
g I<rg. cross sections appear due to the presence of the phase factors

27Ty in Eq. (38). They can be explored by varying an external
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parameter, such as the energy of the electf&esmi energy
E=(1/2)mv?=(#k)?/2m] or the magnetic field. We choose
to study these fluctuations as a function of the wave number
k. It has been pointed out by Bhel and Smilanskj4] that

the correlation functions that describe the quantum fluctua-
tions are related to the statistics of the classical trajectories in
chaotic scattering systems. We are now going to study this
relationship in detail for the case of a mixed phase space at
cyclotron radiusR=0.5 and compare it to the hyperbolic
case R=x). Studying the quantum behavior at different
wave numbers with fixedR implies B/k=const.k/B can
therefore be called the scaled wave number BAB? the
scaled energy in the spirit of the scaled field spectroscopy in
atomic physic§27]. In order to do so we define the fluctua- |G, 6. Modulus square of the correlation function of the scat-
tions of the scattering amplitude and the cross section withering amplitudg/C,, r(«)|2. Full circles: hyperbolic caseRi=).
the help of an average over a finikeange 2. Triangles: nonhyperbolic cas&®€0.5). In both cases we chose
=3.4, ky=1000, Ak=10.0, »=1.0. f, g(#) has been evaluated
using 2.0< 10’ trajectories from theb interval [ —0.54,0.54. For
comparison we shoquﬁznoPg(n)equ;<In)|2 for R=o (dash-
dotted ling and R=0.5 (dashed ling as well as
The correlation functions of the scattering amplitudes|=n-n,P(n)exp(xIn)? for R=c= (full line) andR= 0.5 (small dot$

~fRa(k):fm)(k)_<fRa(k)) and the cross sections with 1=0.8 andng=4. All curves are normalized to unity at
K =0. The inset shows the small wave number regime, where the

Gl

1 (k+n
(f(k)),ﬁﬂfk f(k")dk’. (6)

-7

o do do striking difference between the hyperbolic and the nonhyperbolic
— (K)=— (k)= — case is most clearly seen.
70 =45 <d9(k)>n y
] whereP(n)=N(n)—N(n+1) is the total number of trajec-
are then defined as follows: tories perb interval which undergm reflections. We can
_ - therefore write
Coriky(K)=(Tro(Ko)* Tro(KoF 1)) ak (78
K (97 4037 s 7b d LS i/
oRIo(K) =\ g (Ko gg (Kot %) n (7o) ce,R(KwEn:Zno P(n)expik/n}. 9)

Let us first discuss the correlation function of the scattering; is seen that in this approximatioB,, g(«) is the Fourier

amplitudeC r (). If EQ. (38 is inserted into Eq(78) @  transform ofP(n) which is the negative derivative of(n).
double sum is obtained, the diagonal term of which takes th&his result is similar to that of Blmel and Smilansk[4],
form who related the energy correlation function of tBenatrix
elements to the time dependent survival probabNy). In
the hyperbolic case botN(n) as well asP(n) decay expo-
nentially, so that|C,r(x)|?> becomes a Lorentzian with
width A. As mentioned above, in the case of a mixed phase
Here £(x) =1—sin(x)/x, coming from the averagé). It is  spaceN(n) decays asymptotically asl(n)<n~#. Conse-
plausible that there should exist a linear relationship betweequently P(n)sn~ ("1 and the correlation function should
the effective lengttl of a trajectory and its number of  then vary as, g(x) > «” [9-12,15. However in our special
reflections. We found empirically by plotting for a large €€ the algebraic behavior sets in only very “late,” i.e.,

. . -~ . after more than 300 bounces.
number of trajectories v& that we haveL~/n with / . ) )
—0.8. If we define In Fig. 6 we compare the correlation functio@s r(«)

for a arbitrarily chosen angl®=3.4, which occur in the
hyperbolic R=<) and in the nonhyperbolicR=0.5) cases.
Pg(n)::z Ciln(j)=n We have added the Fourier transforms of the functi®(is)
J andP 4(n) in order to determine the accuracy of the approxi-
_ ) ) ) mation steps that lead to E@). The most striking feature is,
to be the number of trajectories which are scattered into thgs course, the different widths of the functions in the differ-
angle¢ and have exactly reflections, and if we repdlace the ent cases. These widths are given by the different escape
function £ by a step function, we haveCyp(x)  rates\=0.48 and\=0.038, respectively. This is plausible
~Zn-n,Pa(n)expglix/n}, wheren,>0 depends on” and  from Eq. (9), which states, that the correlation function is
7. Itis clear that in the case of chaotic scatteriatgo in the  essentially the Fourier transform Bf{n). It is interesting to
presence of stable orbjt®,(n) only weakly depends o#. note that the diagonal approximation leading @g r(«)
Its angle average, on the other hand, is j&n)/27r, %Eﬁ:noPg(n)expGKIn) is much more accurate in the non-

Cori(#)~Cor(k)= 2 E(nLu)cuexplinly}. (®)
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hyperbolic case than otherwise. On the other hBpth) is  the smoothing ranges and Ak.

very badly approximated bi(n) in this case. Detailed cal- We turn now to a discussion of the correlation function of
culations[14] show that the accuracy of the diagonal ap-the scattering cross sectidf, g (). Inserting Eq.(3a)
proximation increases with increasikg and with increasing into Eq. (4), and the result into Eq.7b) we obtain

Korigi)={ 2 VeweaCoveué(nLu=L ) é(n[Lu=Ta)) (103
u#yz:x;z

expli (Ly—L\)] ax

. -~ bl bl -~ -~ .W
xexplik(Ly—L,+L+Ly— Lv)]exi{ |§(/-Lw_ Mzt g™ My)

=Y e E(nlle — Lhexp {inll - LI} + < > > (10D

UYWL Z

u%u uFv,wiEz

uFEzWHEV Ak
K éi,R (%)

whereKS () is the diagonal part. If we compare it with the pair of trajectories ¢,v) having the effective lengths, and
diagonal part8) of the scattering amplitude correlatcion func- L,. In Figs. 8 and 9 we compare the Fourier transform of
tion we see that we have approximateli(yr(x)  K&R(x) (form facto) with a plot of the productsc,c,
*|C3,R(K)|2- The difference consists in a different combi- against the modulus of effective length difference. In the
nation of the¢ functions. In Eq.(10b) the effect of these hyperbolic case the form factor decays rapidly and has a
functions is to eliminate those pairs of trajectories whichrandom structure. In the nonhyperbolic case the form factor
have an effective length difference larger thag,Whereas decays very slowly and has a periodic structure. This struc-
in Eq. (8) the ¢ functions eliminate short trajectories. Ne- ture is also visible in the values of the weightsc, . The
glecting these different restrictions we can state in diagonal
approximation

K*R(x)~|C R ()| 2. (11)

In Fig. 7 we compare the correlation functions of the scat-
tering cross sections in the hyperboliR€) and nonhy-
perbolic case R=0.5) with |C?R(k)|2. We have also taken
two different anglesy to show the weak but distinct angle
dependence of the fluctuations. Since the cross sections ¢
our model geometry can approximately be related to the
transmission coefficients in a three-lead junction we expeci
that the results shown in Fig. 7 should be similar to the
mesoscopic fluctuations of the conductance of a three-leat
junction with and without a magnetic field. As soon as stable .
classical orbits appear the range and the degree of correlatiog?
of the fluctuations change drastically. Again the smale-
gime is characterized by the different escape rates of Fig. 3
Furthermore we observe in the nonhyperbolic case at highe
wave numbers characteristic oscillations which are absent ir
the hyperbolic case.

In the following we are going to demonstrate that these ) ] ] ]
oscillations are due to a Bohr-Sommerfeld type quantization FIG. 7. C_orrelanon function of scattering cross septlc(a};and
of the stable periodic orbits. From EGLOb) it follows that ~ (P) hyperbolic case R=2), (c) and (d) nonhyperbolic caseR

OR . . . . =0.5). The averages i@ and(c) have been done witly=1 and
K%"(k) is essentially the Fourier transform of the We'ghtSAkzgo, whereas irb) and(d) with =30 andAk=30. Full thick

CuCy with respect to the effective length difference§  |ines correspond to scattering cross sections into angHS.4,
—L, . This product can be interpreted as the probability for adashed lineg=5.4, thin lines aréC?R(«)|2.

K(x)
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X

period is just the effective length_ = 2.6 (see Appendix A

0 2 4 6 8 10 12 14 16 18 20 There is an additional structure within the period of the
stable orbits which just corresponds to a length of the un-
121 I stable orbit & —), L, _=0.96. It seems that the transient
orbits, when they enter or leave the vicinity of the stable
Z 8- - orbits of the (~) type have sections of theH{—) type. Thus,
= we find that the periodic structure in the correlation function
T I of the scattering cross section is due to resonances which
”ﬂ appear if the Bohr-Sommerfeld condition
0
10° - A hKL_= 3@ pdq=2mfi(n+c) (12
for quantization of the stable orbitH) is fulfilled.
IV. DISCUSSION AND CONCLUSION

6 8 10 12 14 16 18 20
It We have studied the classical and quantum chaotic scat-

tering properties of the three-disk billiard in the absence and
tion (form factop vs orbit length differencé; — L; together with the presence of an a_pplled magnetlc fleld'. ".1 the absence O.f the
values ofc;c; used for calculating< *R(«) for the hyperbolic case field the system IS hyperbgllc and exh|b|t.s an _equnentlally
(R=0). decaying survival probabilibyN(n) of trajectories in the
scattering region. Beyond a certain critical field some of the
invariant orbits become stable, which leads to a much slower
decrease oN(n). The asymptotic algebraic decay with ex-

FIG. 8. Fourier transform of the cross-section correlation func-

X ponent 3=1.37 is reached only fon>300. The drastic
0 2 4 6 8 10 12 14 16 18 20 change in the statistics of the transient trajectories is reflected
T in the statistics of the quantum fluctuations. As the correla-
6 : tion function C(«) of the wave number fluctuations of the

scattering amplitude is approximately proportional to the
Fourier transform of the derivative ®(n), the slow decay
of N(n) is reflected in a much sharper peak| @(«)|? near
x=0. The latter quantity is, in diagonal approximation, ap-
proximately proportional to the correlation functi#{«) of
the wave number fluctuations of the cross section. This effect
should be visible in three- or four-lead junctions under the
J influence of an applied magnetic field.

In our case the phase space enclosed by the the fractal
“cantori” is very small and is only explored by very long
transient classical trajectories. Their role in the quantum
;e fluctuations is negligible. Therefore for our model the quan-
0% 4 Cl -} tum fluctuations are not self-similar as is the case for other

IS
L

[FIKGON

N
L

10°

7 o E ; RN | scattering geometries with mixed phase sfidde15,28-30
, Whether or not this situation is exceptional or generic in
10 systems with mixed phase space must be explored by further
B model calculations and experimental measurements.
10 ' ] In our semiclassical calculation the phase space structure
TR é' T 1'-4' : of the trapped orbits enter via the transient orbits. Recently a

16 18 20 theoretical investigation was published in which the quantum

time delay is directly related to a semiclassical sum over the
FIG. 9. Fourier transform of the cross-section correlation func-closed orbits of the scattering regipd]. One can therefore

tion (form factop vs effective length differencé,—T; together ~ €XPECt that the fluctuations in the quantum time delay will
with the values ot;c; used for calculatingK”(«) for the nonhy- reflect the phase space structure of the invariant set in a
perbolic case R=0.5). The bottom picture shows full rectangular Similar way as it is the case for the fluctuations of the trans-
lines at length differences being multiples bf =2.6 [effective =~ Mission coefficients. We conclude by suggesting to measure
length of the stable orbit/) of Fig. 2]. The positions of the broken the conductance fluctuations of rounded junctions at different
lines are those of the full lines plus and mirlus_ [effective length  scaled fields to detect the traces of the transition from the
of the unstable periodic orbit{ —) (see the Appendj. hyperbolic to the nonhyperbolic situations.

|Li'|—j|
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FIG. 11. Lyapunov exponentsfor the unstable orbits depicted
in Fig. 11 as a function of the cyclotron radiis
FIG. 10. Left: The unstable periodic orbit with code ) and

the simplest of the stable periodic orbits with code)(together

For the effective lengths of these orbits we have to calcu-
with the midpointsm; of the arcsm, is in the center of the stable late the action along the orbit

island in Fig. 4. Right: The simplest of the unstable periodic orbits
with code (+).

~ _ e F
AKL=S= %bfpdlbfqzﬁkl—EBF=ﬁk I——,
ACKNOWLEDGMENTS

R
We are indebted to H. Thomas and H. Friedrich for con-

(A3)
. . . : k ) wherel is the length of the periodic orbit arfelthe oriented
tinuous support and stimulating discussions. W. S. is gratefylst area.
to J. Hajdu for hospitality at Cologne University. This work

has been supported by Deutsche Forschungsgemeinschaft

For the orbits (+) and (—) we obtain
under Schi 308/4-1. B 1
L.=3Rw+ ﬁ(3z\/R2—22: 22\3) (Ada)
APPENDIX A: THE SMALLEST CLOSED ORBITS
OF THE THREE-DISK BILLARD with
The Poincaremap K; which generates the sequence of 3
midpoint coordinates rf,,m,) of arcs due to reflections 7= a- and w=arcsir(£). (Adb)
from disk # i with midpoint (x; ,y;) is given by 2 R
My =Sy + (M, —X;)cog 2y) — (My—y;)sin(2y),

For the orbit - —) we have
m§=sy+(mx—xi)sin(Zy)Jr(my—yi)cos{Zy). (A1)

~ FARS 7
L, _=2Rarcsi R +2z 1—§ (A5a)
It is just a rotation aboutx;,y;) by the angley defined by
with
ra+d?—R?
COSV="5 G ~ a
with

(A5b)

d= \/(mx_sx)2+(my_sy)2_ APPENDIX B: RAINBOW SINGULARITIES
The stability of an orbit of periog is determined by the
eigenvalues\ .. of the stability matrixS= (D K;)P which is

the pth power of the Jacobian &, . In terms of the trac&

A rainbow singularity appears if the scattering function
of Sthey are given by16]

‘9(b) has an extremum at a certain valag. If we add the

semiclassical scattering amplitudes on both sides of the ex-
tremum we gef14]

N

%(Ti VT2-4).

. \/E 0— 03 Sl
(A2) fs(0)=expi ‘”ﬁ( A )
Since\ ,A_=1 they are either unit rootéstable case|T|

2 0—0,\%% =
: X cog k= |AB| -1, (B1)
<2) or real and reciprocal to each other. The Lyapunov 3 A 4
exponenth is then given by the greater of the two hs

=In|\,|. In Fig. 10 we show the Lyapunov exponents of thewith A= 3(5%6/9’b), B=(d7/db) and 6= KLg— /4(u +
three periodic orbits depicted in Fig. 11.

+un_). Here 7 is the impact parameter along the “goal
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line” at point B (see Fig. 1 This expression, which diverges The bookkeeping of these expressions takes a lot of comput-
at 0 is regularized in the usual wg1] by means of the ing time. So we replaced in our numerical calculati®ib)

Airy function Ai(x): by 10"*° in the region around), whered(b)<10 *°. We
\/2— compared calculations using this cutoff procedure with cal-
f(6)=exp(i 5)—7T|kAB| 1/6 culations using Eq(B2), where we took an approximate ver-
JIA| sion of the Airy function[14]. We found only minor differ-
ences, and the statistical properties of the results were not
X Ai| —|kAB|2/3 - as} (B2) altered. We therefore used the cutoff procedure throughout
A our calculations.
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